Sciforce

International Journal Bioorganic and Medicinal Chemistry Journal homepage: <u>www.sciforce.org</u>

A dual responsive probe based on bromo substituted salicylhydrazone moiety for the colorimetric detection of Cd^{2+} ions and fluorometric detection of F^- ions: Applications in live cell imaging

Krishnaveni Karuppiah, Iniya Murugan, Murugesan Sepperumal, and Siva Ayyanar^{a*}

^aSupramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.

ARTICLE INFO

ABSTRACT

Article history: Received 20210207 Received in revised form 20210215 Accepted 20210224 Available online 20210224

Keywords: 5-Bromosalicyl hydrazine, Colorimetric, DFT, Hela cells, Zebrafish embryos A new fluorimetric and colorimetric dual-mode probe, 4-bromo-2-(hydrazonomethyl) phenol (**BHP**) has been synthesized and successfully utilized for the recognition of Cd^{2+}/F^{-} ions in DMSO/H₂O (9:1, v/v) system. The probe displays dual channel of detection via fluorescence enhancement and colorimetric changes upon binding with F⁻ and Cd²⁺ ions respectively. The Job's plot analysis, ESI-MS studies, Density Functional Theoretical (DFT) calculations, ¹H NMR and ¹⁹F NMR titration results were confirmed and highly supported the 1:1 binding stoichiometry of the probe was complexed with Cd²⁺/F⁻ ions. Furthermore, intracellular detection of F⁻ ions in HeLa cells and fluorescence imaging analysis in Zebrafish embryos results of the probe **BHP** might be used to reveal their potential applications in a biological living system.

2021 Sciforce Publications. All rights reserved.

*Corresponding author: E-mail: drasiva@gmail.com, siva.chem@mkuniversity.org (A. Siva)

Tel. +91-452-2458471/346, Fax. +91-452-2459181

Supporting information

S. N o	Contents	Page. No
1.	Determination of Binding constant and LOD.	3
2.	¹ H, ¹³ C NMR spectrum of BHP (Figure- S1, S2)	4
3.	ESI-MS spectrum of BHP-Cd ²⁺ (Figure- S3)	5
4.	ESI-MS spectrum of BHP- F ⁻ (Figure- S4)	5
5.	Linear fit analysis of BHP with Cd^{2+} in UV-visible and F^- in both UV-	6-7
	visible and Fluorescence spectroscopy (Figure- S5-S7)	

6.	B-H Plot of BHP VS Cd ²⁺ from UV-vis titration (Figure- S8)	7
7.	B-H Plot of BHP vs F [−] from UV-vis titration (Figure- S9)	8
8.	B-H Plot of BHP VS F ⁻ from fluorescence titration (Figure- S10)	8
9.	¹⁹ F NMR Spectrum of TBAF (Figure- S11)	9
10.	¹⁹ F NMR Spectrum of TBAF with BHP (Figure- 12)	9
11.	Cytotoxicity measurement of BHP (Figure- S13)	10
12.	Previous reports of F ⁻ ion receptors with their LOD (Table S2)	11
13.	References	12

1. Determination of Binding constant from Benesi-Hildebrand method

The binding constant of Cd^{2+}/F^{-} with **BHP** has been calculated by using UV-visible and Fluorescence spectrometer respectively. The fixed concentration of **BHP** was used throughout the titration and any given concentration of F^{-} with **BHP** gives good linear relationship. The binding constant value of F^{-} with **BHP** was determined by using Benesi-Hildebrand eqn¹.

 $1/(A-A_0) = 1/\{K(A_{max}-A_0)[F^-]\} + 1/[A_{max}-A_0]$

Here, A_o is the absorbance of **BHP** without F^- ions, A is the absorbance of **BHP** with F^- ions (at given concentration), A_{max} is the absorbance of **BHP** with F^- ions (in saturated concentration). K is the association constant (M^{-1}). The association constant (K) could be determined from the slope of plot 1/ (A-A_o) VS 1/ [F^-].

Further, the binding constant values of F^- with **BHP** have been calculated by using a fluorescence method. The concentration of **BHP** was kept constant throughout the titration and varying the concentration of the F^- gives good linear relationship. The binding constant value of F^- with **BHP** was calculated from by using modified Benesi - Hildebrand equation².

 $1/I-I_{min} = 1/I_{max}-I_{min} + (1/K[C]) (1/I_{max}-I_{min})$

Here, I_{min} is the emission intensity of **BHP** without F^- , I is the emission intensity of **BHP** with any given concentration of F^- , I_{max} is the emission intensity of **BHP** at a concentration of complete saturation, K is the binding constant, [C] is the concentration of **BHP**. The value of K has been determined from the slope of the plot $(I_{max}-I_{min}) / (I-I_{min})$ VS 1/[C] for **BHP**- F^- .

2. Determination of Limit of Detection (LOD)

The limit of detection was calculated using this equation³.

$\mathbf{DL} = \mathbf{CL} \times \mathbf{CT}$

where **CL** is the Conc. of Ligand, **CT** is the Conc. of Titrant at which changes are observed.

The LOD values of F⁻ ions; $DL = 5 \times 10^{-6} \text{ M} \times 0.1 \times 10^{-5} \text{ M} = 0.05 \text{ nM}.$

Figure S1. ¹H NMR spectrum of BHP

Figure S2. ¹³C NMR spectrum of BHP

Figure S5. Linear fit analysis of probe BHP vs Cd²⁺ ion by UV-visible spectroscopy (Insert Figure is fitted linear plot). Absorbance measured at 472 nm.

Figure S6. Linear fit analysis of probe BHP vs F[−] ion by UV-visible spectroscopy (Insert Figure is fitted linear plot). Absorbance measured at 482 nm.

Figure S7. Linear fit analysis of probe BHP vs F⁻ ion by Fluorescence spectroscopy (Insert Figure is fitted linear plot). Fluorescence measured at 603 nm.

Figure S8. Gauging of binding constant value of Cd²⁺ ion with BHP by B-H plot from UV-visible titration profile. Absorbance measured at 472 nm.

Figure S9. Gauging of binding constant value of F⁻ ion with BHP by B-H plot from UV-visible titration profile. Absorbance measured at 482 nm.

Figure S10. Gauging of binding constant value of F⁻ ion with BHP by B-H plot from fluorescence titration profile. Fluorescence measured at 603 nm.

	·17-141						
Bu₄N ⁺ F ⁻ in DMSO d ₆	I						P2 Acquisition Persenters Time* 20180531 Time* 20180531 Time* 20180531 Time* 20180531 Time* 20180531 Tom 20180531 DOLUNT 10610 DOLUNT 10600 TOM 25400 TOM 25400 TOM 25400 DIM 25400 DE 6.50 DIM 26400 DE 6.40 DE 6.40 DE 6.40 DE 2640 DE 2640 DE 2640 DE 0.0000000 DI1 1.00000000 DI2 0.0000000 DI2 0.0000000 DI2 0.0000000 DI2 0.0000000 DI2 0.0000000 DI2 0.00000000 DI2 0.00000000000000000000000000000000000
							ST 5536 SF 376.5924602 MHz MEM EM SSB 0 LB 0.30 Hz
	-100	-120	-140	-160	-180	-200 ppm	PC 1.00 Gandhigram Rural Institute (Deemed to be University)

Figure S11. ⁹F NMR spectrum of Tetrabutylammonium fluoride (TBAF) in DMSO-d₆

International Journal Bioorganic and Medicinal Chemistry www.sciforce.org

Figure S12. ¹⁹F NMR spectrum of BHP-F⁻ complex in DMSO-d₆

Figure S13. Cytotoxicity analysis of BHP vs HeLa cells

Table S1:	Previous	reports of	chemorece	ptors for	sensing F ⁻	ion and	their LOD

S.No	Chemosensors	Fluorescence Responses	LOD	Application	References
1.	Acridinedione derivative	Ratiometric	$9.29 \times 10^{-5} \mathrm{M}$	-	Iqbal, N.et al, <i>RSC Adv</i> , 2018 , 8, 1993.
2.	Indole derivatives	Turn-off	$1.8 \times 10^{-6} \mathrm{M}$	Cell and Zebrafish Imaging	Naha, S. et al, <i>Chemistry</i> <i>Select</i> , 2019 , <i>4</i> , 2912.
3.	Ferrocene- triazole- derivatives	Turn-on	2.98 ×10 ⁻⁶ M	-	Hosseinzadeh, R. et al, <i>Chemistry Select</i> , 2019 , <i>4</i> , 3914.
4.	Fluorenone derivatives	Colorimetric	2.31 × 10 ⁻⁶ M	-	Mohar, M, et al, <i>Chemistry Select</i> , 2019 , <i>4</i> , 8061.
5.	Pyrrole derivatives	Turn-on	1.58×10 ⁻⁵ M	-	Tao, T. et al, <i>Dyes Pigm</i> , 2019 , <i>170</i> , 107638.
6.	Boronic acid derivatives	Colorimetric	$3.45\times 10^{-7}M$	-	Wu, H., et al, <i>Spectrohim.</i> <i>Acta, Part A</i> , 2019 , <i>214</i> , 393.
7.	Imidazole derivatives	Turn-on	0.02 mg/ L or 20 ppb	-	A. Das, et al, Spectrochim. Acta, Part A, 2019 , 220,117099.
8.	Acylhydrazone derivatives	Turn-on	8.31×10 ⁻⁷ M	-	<u>B.Bai</u> , et al, <i>Soft Matter</i> , 2019 , <i>15</i> , 6690.
9.	ВНР	Colorimetric and Turn-on	0.05 nM	HeLa Cell/ Zebrafish Imaging	Present work

References

- 1. Senthil Murugan, A.; Vidhyalakshmi, N.; Ramesh U.; Annaraj J. J. Mater. Chem. B, 2017, 5, 3195.
- 2. Goswami, S.; Sena, D.; Dasa, N. K.; Funb, H-K.; Quah C. K. Chem. Commun., 2011, 47, 9101.
- 3. Imran Khan. R.; Pitchumani. K. RSC Adv, 2016, 6, 20269.